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Abstract

We discuss what it means to condition a Markov process on its exit state, using
the resulting theory to consider various examples of conditioned random walk and
Brownian motion. The treatment is informal with an emphasis on computations rather
than proofs.

Consider a time-homogeneous Markov process Xt on a state space S with transition kernel

P t(x, dy). Up to some measurability issues, this means the following: For each x ∈ S there is

a probability measure Px on the space Ω of paths {Xt} ⊆ S indexed over t ∈ Z+ or t ∈ R+,

i.e. time can be discrete or continuous; for each x ∈ S and t ≥ 0, P t(x, ·) is a probability

measure on S; if P t operates on bounded functions f : S → R by P tf =
∫
S
P t(·, dy)f(y),

then {P t} forms a semigroup of operators, i.e. P sP t = P s+t for s, t ≥ 0; and, of course, the

Markov property holds:

Ex[ f(Xt+s) | Ft ] = P sf(Xt), Px -a.s.,

where Ft is the natural filtration generated by {Xs}0≤s≤t. Recall that a more general Markov

property holds in which f(Xt+s) is replaced with a bounded function of the future {Xs}s≥t:
if F : Ω→ R is bounded and θt : Ω→ Ω, {Xs}s≥0 7→ {Xt+s}s≥0 is the time shift, then

Ex[F ◦ θt | Ft ] = EXt F, Px -a.s. (1)

We want a general way of discussing the “exit state” of Xt, that is, “where it goes

when t → ∞.” It is natural to consider shift-invariant functions H = H ◦ θt or events

A = θ−1
t A (all t ≥ 0), as these depend only on the infinite future. Let I denote the

corresponding sigma field. As it turns out, I is intimately connected with the bounded

harmonic functions on S; these are bounded h satisfying P th = h for all t, or equivalently,

such that h(Xt) is a martingale under Px for each x. On the one hand, a bounded H ∈ I
gives rise to a bounded function h(x) = ExH which is harmonic by (1): h(Xt) = Ex[H | Ft ],

manifestly a martingale. On the other hand, given a bounded harmonic function h, the limit

H = limt→∞ h(Xt) exists Px-a.s. by the martingale convergence theorem, and clearly H ∈ I;

we can then use bounded convergence to recover h(x) = ExH. As long as all the states
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x communicate, the measures induced on I will be mutually absolutely continuous; in this

case L∞(I) is a well-defined object, known as the Poisson boundary.

It is elementary to condition our process pathwise on an event A ∈ I of positive probabil-

ity. Let h(x) = Px(A) be the corresponding harmonic function and S̃ = {x ∈ S : h(x) > 0}
the set of states from which A is accessible. For x ∈ S̃, the conditioned path measure

P̃x � Px and is given by

dP̃x =
1A
h(x)

dPx.

Restricted to Ft, this becomes

dP̃x

∣∣
Ft

= Ex

[ 1A
h(x)

∣∣∣ Ft ]dPx

∣∣
Ft

=
h(Xt)

h(x)
dPx

∣∣
Ft
.

Our starting point is the observation is that the conditioned process is also Markov.

Theorem 1. Under P̃x with x ∈ S̃, Xt is a time-homogeneous Markov process on S̃ with

transition kernel

P̃ t(x, dy) =
h(y)

h(x)
P t(x, dy). (2)

This formula is known as Doob’s h-transform. In terms of measures, (2) expresses that the

conditioned transition probability is absolutely continuous with respect to the unconditioned

one and gives a formula for the Radon-Nikodym derivative. In terms of operators, (2) writes

P̃ t = h−1P th; here h is acting diagonally, i.e. by multiplication.

Proof. First, P̃ t(x, ·) is a probability measure on S̃ because h is harmonic and zero off S̃; the

semigroup property holds because P̃ t is just a conjugate of P t. As for P̃x, it is a probability

measure on paths in S̃ because P̃x

(
h(Xt) > 0

)
= Ex 1h(Xt)>0h(Xt)/h(x) = 1.

Informally, the Markov property is inherited by the conditioned process and (2) is just

Bayes’ rule:

Px(Xt+s ∈ dy | A,Ft) =
Px(A | Xt+s = y,Ft) Px(Xt+s ∈ dy | Ft)

Px(A | Ft)
=

h(y)

h(Xt)
P s(Xt, y).

Rigorously, use the Markov property (1) for the unconditioned process (and the absolute

continuity) to write the desired Markov property for the conditioned process as

Ẽx[ f(Xt+s) | Ft ] = h−1(Xt) Ex[h(Xt+s)f(Xt+s) | Ft ], P̃x-a.s.

To establish it, note the right-hand side is an Ft-random variable, let B ∈ Ft, and compute

Ẽx h
−1(Xt) Ex[h(Xt+s)f(Xt+s) | Ft ]1B

= Ex h
−1(Xt) Ex[ f(Xt+s)h(Xt+s)1B | Ft ]h(Xt)/h(x)

= Ex f(Xt+s)1Bh(Xt+s)/h(x),

= Ẽx f(Xt+s)1B.
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Many of our examples will fit into the above framework by considering an absorbing

boundary ∂S ⊆ S, meaning P t(x, ·) is just δx for x ∈ ∂S. The process stops when encoun-

tering ∂S in the sense that Xt = Xt∧T where T = inf{t : Xt ∈ ∂S} is the hitting time.

Observe that information about where Xt lands in ∂S is contained in I: if Z ⊆ ∂S, then

A = {XT ∈ Z} ∈ I. (Sometimes, for example with a slit domain, one has to be more careful

and redefine ∂S appropriately.)

Example 1. Simple random walk on Z ∩ [0,M ] conditioned to hit M before 0. Here S =

{0, . . . ,M}, ∂S = {0,M}, Z = {M}. Solving the discrete Dirichlet problem gives h(i) =

i/M , 0 ≤ i ≤ M ; this is “gambler’s ruin.” Hence for 0 < i < M we have P̃ (i, j) =

(j/2i)1|j−i|=1. Notice that M does not appear. For the asymmetric simple walk whose steps

are positive with probability 0 < p < 1, one can find h by solving the linear recurrence; the

result is h(i) = (1− ri)/(1− rM), where r = (1− p)/p. Once again, M does not appear in

the transition probabilities.

Example 2. Simple random walk on Z3 conditioned to hit some finite set Z. Here S = Z3,

∂S = Z, so A = {T <∞} and h(x) = Px(T <∞). Interesting fact (stated in discrete time):

(I − P )h(x) = Px(X0 ∈ Z but Xt 6∈ Z for t > 0). In the language of electrical networks,

if Z is a conductor held at unit voltage with respect to a ground at infinity, then h is the

induced potential, and its “discrete Laplacian” represents the source of the induced current

flow through the network (which is the gradient of h); the total current flowing, which equals

the total mass of the source, is called the “capacity” of Z; this quantity is maximal over

all sources on Z whose potentials (normalized to be zero at infinity) nowhere exceed one

(Dynkin and Yushkevich 1969).

Example 3. Random walk on the rooted d-regular tree, conditioned to end up among the

descendants of a given child v of the root u. The symmetry makes it easy to compute h. For

example, h(u) = 1/d and h(v) = (d − 1)/d; in general, h decreases by a factor of d − 1 as

you step “up” toward u or away from v, and 1− h decreases by a factor of d− 1 as you step

“down” toward v or away from u. The words “up” and “down” can be pictured in terms of

the flow induced by h, which incidentally has total current (d− 2)/d.

For a general reversible Markov Chain on a countable state space, i.e. a random walk

on a network, if P t is induced by conductances cxy, then P̃ t is induced by conductances

c̃xy = h(x)h(y)cxy. In a sense, the conditioned walk behaves as the unconditioned walk but

is biased by h, “going with the flow.”

Turning now to the continuous time setting where Xt has infinitesimal generator L =
d
dt

∣∣
t=0

P t, i.e. Lf(x) = limt↓0 Ex

(
f(Xt)− f(x)

)
/t (or equivalently P t = etL), the conditioned

process has generator

L̃ = h−1Lh. (3)

Here h is also L-harmonic, meaning Lh = 0. These statements are obtained by differentiating

the corresponding statements about P t at t = 0.
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In the special case of a diffusion dXt = σ(Xt)dBt + b(Xt)dt in Rd, we have

L = 1
2
σσ† :∇∇† + b·∇ = 1

2

∑
i,j

aij
∂2

∂xi∂xj
+
∑
i

bi
∂

∂xi

where a = σσ†. We can use (3) and L-harmonicity to compute that

L̃ = L+ a
∇h
h
· ∇. (4)

We can also see this using stochastic calculus. On the one hand, the absolute continuity

P̃x

∣∣
Ft
� Px

∣∣
Ft

already implies the diffusion coefficients coincide, and the change of measure

induced by an additional drift term b̃− b is given by the Cameron-Martin-Girsanov formula:

dP̃x

dPx

∣∣∣∣
Ft

= exp

(∫ t

0

a−1(̃b− b)(Xs) · dXs − 1
2

∫ t

0

(̃b− b) · a−1(̃b− b)(Xs)ds

)
.

On the other hand, the Radon-Nikodym derivative is just Ex[ 1A/h(x) | Ft ] = h(Xt)/h(x).

Applying Itô’s lemma and Lh = 0 to log h(Xt), we identify b̃− b = a∇log h, recovering (4).

To summarize, conditioning just adds a drift in the direction of increasing h, with magnitude

given by its relative increase.

Example 4. Brownian motion on the interval [0, c] conditioned to hit c before 0. Here

L = 1
2
d2/dx2, so h(x) = x/c and L̃ = 1

2
d2/dx2 + (1/x)d/dx; in other words, the conditioned

process is the diffusion dXt = dBt + (1/Xt)dt on [0, c]. Notice that c does not appear in the

SDE. For the generalization to a domain in Rd, one would solve the corresponding Dirichlet

problem for the Laplacian.

Example 5. Brownian motion on the interval [0, π] conditioned to remain in (0, π) up to time

t1. This example initially appears to fall outside of our framework. The key is the “space-

time trick”: we can recover the time-homogeneous setting in a trivial way, by enlarging the

state space to include the time variable. Here, S = [0, π] × [0, t1], ∂S =
(
{0, π} × (0, t1]

)
∪(

(0, π) × {t1}
)
, and Z = (0, π) × {t1}. (The boundary is absorbing as above, so the state

actually includes t ∧ T , i.e. the process remembers both where and when it stopped.)

The 2-dimensional generator becomes L = 1
2
d2/dx2 + d/dt, i.e. a = diag

(
1, 0
)

and b =(
0, 1
)†. From (4), we already see that the drift term a(∇h/h)·∇ = (dh/dx)(1/h)d/dx has

only a spatial component, but that it is time-dependent.

The equation Lh(x, t) = 0 is the heat equation with space variable x and time −t. We are

to solve it with initial data h(x, t1) = 1 and Dirichlet boundary conditions h(0, t) = h(π, t) =

0 for t < t1. The solution can be written as the Fourier series h(x, t) =
∑∞

k=1 cke
−k2(t1−t) sin(kx)

with ck = (4/kπ)1k is odd. For the generalization to a domain, one would solve the heat equa-

tion with constant initial data and Dirichlet boundary conditions.

It is natural to ask what happens as t1 →∞; presumably the process converges to some

time-homogeneous positive recurrent process. As we will see in Example 13, the answer

involves the ground state eigenfunction of the Dirichlet Laplacian.
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We now come to the interesting situation where we would like to condition on A ∈ I, but

Px(A) = 0 everywhere. Here the “singular” conditioning must in general be interpreted as

some limit of ordinary conditionings, say on An with Px(An) > 0 and
⋂
nAn = A. The key

observation is that only ratios of values of h ever matter, which allows us to renormalize hn
by scaling it up—hopefully so as to converge to a positive finite limit h. When the result of

this procedure is unique (up to a multiplicative constant), it is reasonable to simply define

the conditioned process by

dP̃x

∣∣
Ft

=
h(Xt)

h(x)
dPx

∣∣
Ft
, (5)

even though the measures themselves are now mutually singular. Significantly, Theorem 1

still holds! The proof used only (5) and the fact that h is a positive harmonic function.

This is called “conditioning in the sense of the h-transform.” (Actually, one should be more

careful. While (2) certainly still defines a Markov semigroup, h(Xt) is in general only a local

martingale under Px; in (5), t may need to be replaced with t ∧ τn where τn is a localizing

sequence like min{t : h(Xt) ≥ n}.)
So when does it work? The full story is that of the Martin boundary of a Markov

chain, a topological object consisting of the ideal points of a certain compactification of the

state space; its Borel measures are in correspondence with the positive harmonic functions,

and the extreme measures (Dirac masses)—which correspond to extremal positive harmonic

functions in the usual sense—represent exit states we can condition on. References include

Kunita and Watanabe (1965), Dynkin and Yushkevich (1969), Kemeny, Snell and Knapp

(1976).

Even with all the theory it is often not a simple matter to show that some part of a

Martin boundary reduces to a point, much less completely analyze a given example. If one

is willing to settle for heuristically justified computations, however, interesting examples

abound. In practice, once you find a positive harmonic function that “does the right thing

at the boundary”—and convince yourself that it is the only one—you’re off to the races.

Example 6. Simple random walk on Z+ conditioned never to hit 0. S = Z+, ∂S = {0},
Z = ∅, h(i) = i. The conditioned walk is transient, as the resistance to infinity is finite:∑∞

i=1 1/c̃i,i+1 =
∑

1/i(i + 1) < ∞. If we condition the conditioned process to return to

zero, however, we recover the simple random walk: h̃(i) = 1/h(i) = 1/i is harmonic for the

conditioned walk. (There are two more surprising dualities between these two processes:

one involves a space- and time-reversal, and the other involves reflection about the past

maximum or future minimum.)

Example 7. Brownian motion on R+ conditioned never to hit 0. S = R+, ∂S = {0}, Z = ∅,

h(x) = x, b̃ = 1/x. The conditioned process is the Bessel-3 process, which is distributed

like the radial process of a 3-dimensional Brownian motion. The same dualities as in the

previous example are present here as well; see Williams (1974), Pitman (1975).

Example 8. Asymmetric simple random walk on Z with probability p of a positive step.

Assuming 1
2
< p < 1, there are two extremal positive harmonic functions: the constant,

and the exponential h(i) = ρ−i with ρ = p/(1 − p). Transforming by the latter should

be interpreted as conditioning the walk to end up at −∞ instead of +∞; it is curious
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that the conditioned walk is again an asymmetric random walk but with the asymmetry

exactly reversed! (The same phenomenon occurs for a one-dimensional Brownian motion

with constant drift.)

Example 9. Simple random walk on the d-regular tree conditioned to end up at a given point

u∗ at infinity. Fix any infinite path un defining our point at infinity; A is the event that the

walk is eventually “below” each un. Making the path bi-infinite, we can define the generation

of a vertex v by |v| = n−m where the unique path from v to u∗ takes m steps to get to un.

Then h(v) = (d − 1)|v|, inducing a constant bias toward u∗ that exactly flips the bias away

from u∗ present in the unconditioned walk.

Example 10. Brownian motion in the hyperbolic plane, conditioned to tend to a given point

at infinity. We could use the Poincaré disk or upper half-plane model; h would be the

corresponding Poisson kernel. A particularly convenient choice is the upper-half plane S =

{(x, y) : y > 0} with the distinguished boundary point at infinity. The metric is conformal

with linear distortion factor y, so the hyperbolic Brownian motion satisfies (dXt, dYt) =

Yt(dB
1
t , dB

2
t ); the generator has a = diag(y2, y2) and b = 0. The Poisson kernel for the point

at infinity is simply h(x, y) = y. We get b̃ =
(
0, y
)†

, i.e. a drift of Yt dt; in the intrinsic

metric, this is a constant drift in the direction of the hyperbolic straight line to the given

point at infinity.

Example 11. Brownian bridge. S = R × [0, t1], ∂S = R × {t1}, Z = {(a, t1)}, h(x, t) =
1√
t1−t

e−(x−a)2/2(t1−t), b̃ =
(̃
bx, 1

)†
, b̃x = (a − x)/(t1 − t). Here there is an alternative way

to condition {Bt}0≤t≤t1 on Bt1 = a, using its structure as a Gaussian process: with t1 = 1

and a = 0 for simplicity, one checks that B1 and {Bt − tB1}0≤t≤1 are uncorrelated and

hence independent; then
(
{Bt}

∣∣ B1 = 0
) d

=
(
{Bt − tB1}

∣∣ B1 = 0
) d

= {Bt − tB1}. It is

not difficult to verify that this process coincides with the solution of the linear SDE dXt =

dBt−x/(1− t) dt: both are mean-zero Gaussian with covariance structure EXsXt = s(1− t)
where 0 ≤ s ≤ t ≤ 1.

Example 12. Scaled Brownian excursion. S = R+× [0, t1], ∂S =
(
{0}× [0, t1]

)
∪
(
R+×{t1}

)
,

Z = {(0, t1)}, h(x, t) = x
(t1−t)3/2 e

−x2/2(t1−t), b̃x = 1/x − x/(t1 − t). Interpretation of h as

density of hitting time of zero (Rogers and Williams 1987).

Example 13. Brownian motion conditioned to remain in an interval forever. S = [0, π]×R+,

∂S = {0, π} × R+, Z = ∅, h(x, t) = et sinx, b̃x = cotx. Time homogeneity; stationary

distribution 2
π

sin2 x (cf. quasi-stationary distribution of killed process, 1
2

sinx). General

domain in Rd: ground state conditioning h = eλ0tϕ0(x) (Pinsky 1985).

Example 14. Brownian motion in a Weyl chamber and Dyson’s Brownian motion (for GUE).

S = {x ∈ Rd : x1 ≤ · · · ≤ xd}, ∂S = {x ∈ S : xi = xj, some i 6= j}, Z = ∅, h(x) =∏
i<j(xj − xi), b̃i =

∑
j 6=i 1/(xi − xj). Relation to Karlin-McGregor formula; generalizations

(Grabiner 1999, Biane 2009).

We finish with an example that features an interplay of all of its extremal positive har-

monic functions; the characterization of the Martin boundary here goes back to Watanabe
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(1960), Blackwell and Kendall (1964). In passing, we note that the positive harmonic func-

tions of an h-transformed process are in a simple correspondence with those of the orig-

inal process: If Ph0 = h0 and h0 > 0, let P̃ = h−1
0 Ph0 as operators; then Ph = h iff

P̃ (h/h0) = h/h0. The map h 7→ h/h0 is a linear bijection, and in particular it preserves

extremality. (Essentially, the Martin boundary is invariant under h-transforms.)

Example 15. Independent die-rolls and Polya’s urn. Consider an urn containing balls of d

different colours; the state space is S = Zd
+. To begin, fix a biased d-sided die which comes

up colour i with probability pi, where

p = (p1, . . . , pd) ∈ ∆ = {(q1, . . . , qd) ∈ Rd : qi > 0,
∑
i

qi = 1},

the standard simplex. The transition dynamics are given by rolling the die independently

and adding a ball of the colour that comes up. In other words, Xn = X0+B1+. . .+Bn where

B1, B2, . . . ∈ {e1, . . . , ed} (the standard basis vectors) are i.i.d. with distribution determined

by EpB1 = p. The strong law of large numbers then says that Pp(Xn/n→ p) = 1.

Now given q ∈ ∆, hq(x) =
∏

i(qi/pi)
xi is a positive harmonic function for this process. In

fact, the hq-transformed process has law Pq, i.e. it is the same process except that the p-die

is replaced with a q-die! Thus Xn/n→ q a.s. under the transformed dynamics, and we can

identify this transform as “conditioning on {Xn/n→ q}”. (It turns out that {hq : q ∈ ∆} is

precisely the set of extremal positive harmonic functions for the original process.)

Finally, we consider a uniform mixture of the laws Pq
0 of these processes started from

X0 = 0. Let λ be normalized (d − 1)-dimensional Lebesgue measure on ∆, and let Pλ
0 =∫

∆
Pq

0 λ(dq). Now

dPλ
0

∣∣
Fn

=

∫
∆

dPq
0

∣∣
Fn
λ(dq) =

∫
∆

hq(Xn)

hq(0)
λ(dq) dPp

0

∣∣
Fn
.

Since hq(0) = 1 for all q, the Pλ
0 -process is the hλ-transform of the Pp

0-process where

hλ(x) =

∫
∆

hq(x)λ(dq) =
∏

ip
−xi
i

∫
∆

∏
iq
xi
i λ(dq) =

∏
ip
−xi
i (d− 1)!

∏
i xi!(∑

i xi + d− 1
)
!

and the integral is evaluated as the well-known normalizing factor of the Dirichlet distribu-

tion. We now easily compute the transition probabilities Pλ(x, x+ei) = (xi+1)/
∑

j(xj+1),

which are precisely those for Polya’s urn started with 1 extra ball of each colour! If we

replaced λ(dq) with the more general Dirichlet(α1, . . . , αd) distribution
∏

i q
αi−1
i λ(dq) (nor-

malized), we would obtain the transition probabilities Pλ(x, x+ ei) = (xi +αi)/
∑

j(xj +αj)

for Polya’s urn started with αi extra balls of colour i.

We have thus stumbled upon the description of Polya’s urn as an exchangeable process:

First pick a biased die according to the Dirichlet distribution with parameters given by the

initial condition, and then just add balls according to a sequence of independent die-rolls.
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